❋ ❋ ❋
Contact: antrod@the-sphere.org
❋ ❋ ❋
ΣΤΟΙΧΕΙΩΝ αʹ
ΟΡΟΙ
αʹ. Σημεῖόν ἐστιν, οὗ μέρος οὐθέν.
βʹ. Γραμμὴ δὲ μῆκος ἀπλατές.
γʹ. Γραμμῆς δὲ πέρατα σημεῖα.
δʹ. Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ ̓ ἑαυτῆς
σημείοις κεῖται.
εʹ. ̓Επιφάνεια δέ ἐστιν, ὃ μῆκος καὶ πλάτος μόνον ἔχει.
ϛʹ. ̓Επιφανείας δὲ πέρατα γραμμαί.
ζʹ. ̓Επίπεδος ἐπιφάνειά ἐστιν, ἥτις ἐξ ἴσου ταῖς ἐφ ̓
ἑαυτῆς εὐθείαις κεῖται.
ηʹ. ̓Επίπεδος δὲ γωνία ἐστὶν ἡ ἐν ἐπιπέδῳ δύο γραμμῶν
ἁπτομένων ἀλλήλων καὶ μὴ ἐπ ̓ εὐθείας κειμένων πρὸς
ἀλλήλας τῶν γραμμῶν κλίσις.
θʹ. ̔́Οταν δὲ αἱ περιέχουσαι τὴν γωνίαν γραμμαὶ εὐθεῖαι
ὦσιν, εὐθύγραμμος καλεῖται ἡ γωνία.
ιʹ. ̔́Οταν δὲ εὐθεῖα ἐπ ̓ εὐθεῖαν σταθεῖσα τὰς ἐφεξῆς
γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν
ἐστι, καὶ ἡ ἐφεστηκυῖα εὐθεῖα κάθετος καλεῖται, ἐφ ̓ ἣν
ἐφέστηκεν.
ιαʹ. ̓Αμβλεῖα γωνία ἐστὶν ἡ μείζων ὀρθῆς.
ιβʹ. ̓Οξεῖα δὲ ἡ ἐλάσσων ὀρθῆς.
ιγʹ. ̔́Ορος ἐστίν, ὅ τινός ἐστι πέρας.
ιδʹ. Σχῆμά ἐστι τὸ ὑπό τινος ἤ τινων ὅρων περιεχόμενον.
ιεʹ. Κύκλος ἐστὶ σχῆμα ἐπίπεδον ὑπὸ μιᾶς γραμμῆς
περιεχόμενον [ἣ καλεῖται περιφέρεια], πρὸς ἣν ἀφ ̓ ἑνὸς
σημείου τῶν ἐντὸς τοῦ σχήματος κειμένων πᾶσαι αἱ
προσπίπτουσαι εὐθεῖαι [πρὸς τὴν τοῦ κύκλου περιφέρειαν]
ἴσαι ἀλλήλαις εἰσίν.
ιϛʹ. Κέντρον δὲ τοῦ κύκλου τὸ σημεῖον καλεῖται.
ιζʹ. Διάμετρος δὲ τοῦ κύκλου ἐστὶν εὐθεῖά τις διὰ τοῦ
κέντρου ἠγμένη καὶ περατουμένη ἐφ ̓ ἑκάτερα τὰ μέρη
ὑπὸ τῆς τοῦ κύκλου περιφερείας, ἥτις καὶ δίχα τέμνει τὸν
κύκλον.
ιηʹ. ̔Ημικύκλιον δέ ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε
τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ ̓ αὐτῆς περι-
φερείας. κέντρον δὲ τοῦ ἡμικυκλίου τὸ αὐτό, ὃ καὶ τοῦ
κύκλου ἐστίν.
ιθʹ. Σχήματα εὐθύγραμμά ἐστι τὰ ὑπὸ εὐθειῶν πε-
ριεχόμενα, τρίπλευρα μὲν τὰ ὑπὸ τριῶν, τετράπλευρα δὲ τὰ
ὑπὸ τεσσάρων, πολύπλευρα δὲ τὰ ὑπὸ πλειόνων ἢ τεσσάρων
εὐθειῶν περιεχόμενα.
κʹ. Τῶν δὲ τριπλεύρων σχημάτων ἰσόπλευρον μὲν
τρίγωνόν ἐστι τὸ τὰς τρεῖς ἴσας ἔχον πλευράς, ἰσοσκελὲς
δὲ τὸ τὰς δύο μόνας ἴσας ἔχον πλευράς, σκαληνὸν δὲ τὸ
τὰς τρεῖς ἀνίσους ἔχον πλευράς.
καʹ ̓́Ετι δὲ τῶν τριπλεύρων σχημάτων ὀρθογώνιον μὲν
τρίγωνόν ἐστι τὸ ἔχον ὀρθὴν γωνίαν, ἀμβλυγώνιον δὲ τὸ
ἔχον ἀμβλεῖαν γωνίαν, ὀξυγώνιον δὲ τὸ τὰς τρεῖς ὀξείας
ἔχον γωνίας.
ELEMENTS BOOK 1
DEFINITIONS
1. A point is that of which there is no part.
2. And a line is a length without breadth.
3. And the extremities of a line are points.
4. A straight-line is (any) one which lies evenly with
points on itself.
5. And a surface is that which has length and breadth
only.
6. And the extremities of a surface are lines.
7. A plane surface is (any) one which lies evenly with
the straight-lines on itself.
8. And a plane angle is the inclination of the lines to
one another, when two lines in a plane meet one another,
and are not lying in a straight-line.
9. And when the lines containing the angle are
straight then the angle is called rectilinear.
10. And when a straight-line stood upon (another)
straight-line makes adjacent angles (which are) equal to
one another, each of the equal angles is a right-angle, and
the former straight-line is called a perpendicular to that
upon which it stands.
11. An obtuse angle is one greater than a right-angle.
12. And an acute angle (is) one less than a right-angle.
13. A boundary is that which is the extremity of something.
14. A figure is that which is contained by some boundary or boundaries.
15. A circle is a plane figure contained by a single line
[which is called a circumference], (such that) all of the
straight-lines radiating towards [the circumference] from
one point amongst those lying inside the figure are equal
to one another.
16. And the point is called the center of the circle.
17. And a diameter of the circle is any straight-line,
being drawn through the center, and terminated in each
direction by the circumference of the circle. (And) any
such (straight-line) also cuts the circle in half.
18. And a semi-circle is the figure contained by the
diameter and the circumference cuts off by it. And the
center of the semi-circle is the same (point) as (the center
of) the circle.
19. Rectilinear figures are those (figures) contained
by straight-lines: trilateral figures being those contained
by three straight-lines, quadrilateral by four, and multilateral by more than four.
20. And of the trilateral figures: an equilateral triangle is that having three equal sides, an isosceles (triangle)
that having only two equal sides, and a scalene (triangle)
that having three unequal sides.